Abstract
The aim of this work was to assess the antimicrobial capacity of chitosan-based films obtained by a dissolution and solvent evaporation (solvent casting) method at various temperatures (i.e., 37, 80, and 120 degrees C) on the growth of Staphylococcus aureus and Salmonella spp. bacteria. The effect of temperature (4, 23, 37 degrees C) and relative humidity (RH; 0, 75%) during storage on the biocide performance was also investigated. Color parameters and ATR-FTIR spectra were analyzed for each sample to investigate the relationship between structural and/or chemical alterations in the films during storage and biocide performance. The results indicated that films formed at 37 and 80 degrees C presented a significant inhibitory effect for both types of bacteria; however, when cast at 120 degrees C, the films ceased to exhibit antimicrobial properties. Curiously, chitosonium acetate films were seen to diminish to a large extent their biocide properties when stored at 23 degrees C and 75% RH for 2 months or alternatively when stored and 37 degrees C and 0% RH over the same period of time. In good agreement with this behavior the FTIR results indicated that under the previous conditions a significant fraction of the biocide carboxylate chemistry remained in the polymer after contact with the bacterial solution due to a strong reduction in cast film solubility. Because biopolymer active species migration from the film to the culture media is needed for the biomaterial to exhibit measurable antimicrobial effect, proper control of temperature and humidity during film formation and storage is necessary to design the optimum performance of chitosan as a biocide.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.