Abstract

In this paper, we report the study of the production of MoTe2 (molybdenum ditelluride) samples after a high dose of electron irradition. A 2 MeV Van de Graaff accelerator was used to irradiate the sample at the following conditions: 1.3 MeV voltage, 5 μA current, 25 kGy/min dose rate, and 1000 kGy total dosage. These conditions are maintain fixed while the irradiation dosages were changed to 50, 100, 200, and 500 Mrad. The optimization of the dosage used for the production of MoTe2 nanotubes was obtained from the analysis of the samples that were examined in a high-resolution transmission electron microscope. The most efficient production of MoTe2 nanotubes was obtained at the range between 100 and 200 Mrad. A very typical characteristic was obtained for rotated structures with angles of 4, 5, 7, 8, and 12° observed in the diffraction pattern for MoTe2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.