Abstract

Interfacial oxidation of Nb and Si at 650 °C on Laves phase forming Ti–Nb stabilized ferritic stainless steel (Fe–19Cr–0.9Si–0.2Nb–0.1Ti (at.%), grade EN 1.4509) was studied by electrochemical impedance spectroscopy and photoelectron spectroscopy. It was found that excess Nb efficiently hinders the formation of electrically resistive SiO2 layer at the oxide–metal interface. The beneficial role of Nb was attributed to its high segregation rate and the formation of conductive oxides at the interface. However, the oxidation was strongly influenced by age-precipitation of the Laves (FeNbSi)-type intermetallic phase, which removed free Nb from the alloy solution and thus allowed SiO2 layer to form more easily. These results can be applied to optimize the oxide scale composition by Nb alloying of the ferritic stainless steel to maintain high performance under various operation conditions, particularly in solid oxide fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.