Abstract

This study investigated Ni+2 removal performance in 3DER reactors where electrocoagulation mechanisms and microelectrodes are used together. EDTA modification was carried out on the granule-activated carbon surface to increase the efficiency and affinity of microelectrodes against Ni+2 molecules. The grafting was examined using BET, FT-IR, SEM, EDS, and the elemental mapping methods. With the surface analyses made in this study, it was revealed that EDTA modification on granulated activated carbon was successfully performed. Also, 8.48%wt by mass of EDTA grafting on granular activated carbon was possible. EDTA functionalization did not affect the surface pore structures of CAC much. Under 10V potential, 97.82% Ni removal efficiency was obtained with 2D in 35min, while 96.69% removal in 10min and 100% removal in 15min were obtained in the 3D reactor. The Ni+2 removal mechanism in 3DER reactors has been determined to conform to the pseudo-second-order kinetic model. The k2 value obtained for 10V (1.36 10-2) is 27 times the k2 value obtained for 5V for 3DER reactors. In addition, using central composite design (CCD), operational parameters such as time, concentration, and potential difference affecting Ni+2 removal in 3DER reactors have been optimized. The most influential parameter is the applied voltage, followed by time and concentration. It has been determined that 3DER reactors using EDTA-modified microelectrodes are highly efficient and suitable for Ni+2 removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.