Abstract

BackgroundIn this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables.ResultsWhen costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid), after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton) dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan), 17 €/Mg xylose benefits (from liquid: 80% of all xylan), 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible.ConclusionsAfter the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid pretreatment of wheat straw in this study is 65 €/Mg dry feedstock. This is reached when process conditions are: 50 min at 170°C, with a maleic acid concentration of 46 mM. Maleic acid replenishment is the most important of the studied cost factors.

Highlights

  • In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables

  • First, that 1 to 2 Mg/ha of straw is left on the land in order to maintain soil quality and, secondly, that a 90% yield of ethanol from carbohydrate is achieved, the total potential for European Union (EU) bioethanol production from wheat straw lies between 39 and 48 gigalitre (GL) per year [1,2,3,4]

  • We study the influence of varying pretreatment time, temperature and maleic acid concentration on the following six factors of the resulting pretreatment: 1. glucose benefits from improved enzymatic digestibility of the raw material

Read more

Summary

Introduction

The dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. First, that 1 to 2 Mg/ha of straw is left on the land in order to maintain soil quality and, secondly, that a 90% yield of ethanol from carbohydrate is achieved, the total potential for EU bioethanol production from wheat straw lies between 39 and 48 gigalitre (GL) per year [1,2,3,4]. This is about 25% to 30% of the 160 GL bio-ethanol needed to completely change from gasoline (145 GL/year) to E85 fuel (188 GL/year) in the EU. This means that about 29 - 35 GL of gasoline can potentially be replaced with bioethanol from EU wheat straw, when using E85 [5,6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.