Abstract

In this paper, a lumped mass human model is used to minimize the energy absorption at the feet/hip level when the body is subjected to vertical vibration. The contact forces are assumed unknown. By coupling the dynamic response of the body with certain objective criteria, the optimum damping and stiffness coefficients of shoes/chairs are sought. The optimization technique is based on the quasi-Newton and finite-difference gradient method and is used to seek optimum coefficients of the contact forces in the solution of the body's response in the frequency domain. The criteria of acceleration, displacement and internal forces response area swept for a range of 0-15 Hz form the basis of our simulation study. In the seated/standing postures it is found that for each criteria the frequency response shifts the peak of resonance of each body segment response from 4.5/3.67 Hz to 2.5/2.255 Hz. In addition, the total energy reduces drastically when the contact conditions are optimum. The method presented in this paper is useful in modeling the medium of contacts and especially in controlling the effects of human body vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.