Abstract

Toe-to-heel air injection (THAI) and its catalytic version CAPRI are relatively new technologies for the recovery and upgrade of heavy oil and bitumen. The technologies combine horizontal production well, in situ combustion, and catalytic cracking to convert heavy feedstock into light oil down-hole. The deposition of asphaltenes, coke, and metals can drastically deactivate the catalyst in the CAPRI process. A fixed bed microreactor was used to experimentally simulate the conditions in the catalyst zone of the oil well of CAPRI. In this study, oil upgrading and catalyst deactivation in the CAPRI process were investigated in the temperature range of 350–425 °C, pressure of 20 barg and residence time of 9.2 min. Additionally, a guard bed consisting of activated carbon particles prior to the active catalyst in a microreactor and/or the addition of hydrogen to the gas feed were used to minimize coke formation and catalyst deactivation through respectively removing and hydrocracking the coke precursors. It was ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.