Abstract

The Camellia oleifera fruit harvester, a specialized agricultural device, is engineered for efficient operation within the densely planted C. oleifera groves of China’s undulating terrains. Its design features a notably small footprint to navigate the constrained spaces between trees. With the enhancement of the functionality and power of the harvester, the engine compartment becomes even more congested. This, while beneficial for performance, complicates heat dissipation and reduces harvesting efficiency. In this study, experiments were initially conducted to collect temperature data from the main heat-generating components and parts susceptible to high temperatures within the harvester’s engine compartment. Subsequently, a 3D model was developed for numerical simulations, leading to the proposal of optimization schemes for the engine compartment’s structure and the validation of these schemes’ feasibility. A comparison of the experimental data, both before and after optimization, revealed a significant reduction in the surface temperatures of components within the engine compartment following optimization. As a result, the heat dissipation of the engine compartment has been greatly optimized. The harvester has demonstrated prolonged normal operation, enhancing the reliability and economy of the harvester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.