Abstract

Optimization of the geometry of a metallic bowtie gap at radio frequency is presented. We investigate the geometry of the bowtie gap including gap size, tip width, metal thickness and tip angle at macroscale to find the maximum electric field enhancement across the gap. The results indicate that 90∘ bowtie with 0.06 λ gap size has the most |E t |2 enhancement. Effects of changing the permittivity and conductivity of the material across the gap are also investigated. NEC-2 simulations show that the numerical calculations agree with the experimental results. Since the design and fabrication of a plasmonic device (nanogap) at nanoscale is challenging, the results of this study can be used to estimate the best design parameters for nanogap structure. Different amounts of enhancement at different frequency ranges are explained by mode volume. The product of the mode volume and |E t |2 enhancement is constant for different gap structures and different frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.