Abstract

The need to design high performance of a cooled gas turbine is considered with emphasis made on coupled aerodynamic and heat transfer optimization of the vane, blade, and single stage cooled gas turbine by using a multiobjective optimization method. The aerodynamic profile is designed to have three sections and the cooling structure to consist of a serpentine passage, with a tail transverse channel and trailing edge slots. The optimization platform is built up in an in-house code using a cooling structure parametric method based on MATLAB, as well as automatic grid generation methods, a blade profile parametric program in FORTRAN, the soft ware ISIGHT and ANSYS-CFX. The optimization platform evaluates the aerodynamic effects through the aerodynamic efficiency and presents the cooling effect by the high-temperature coefficient. The pressure drop is described by a pressure drop function. The multiobjective optimization method is accomplished by optimizing the inlet flow angle, installation angle, and the post-corner angle of the vane and blade profiles, while the position of partition is the optimized variable of the cooling structure. The results show that there exists an optimum case in aerodynamic efficiency, high-temperature coefficient, and pressure drop in a Pareto-optimal front. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call