Abstract

Factors influencing the determination of optimum reactor configuration for activated sludge denitrification are investigated in this paper. A kinetic optimization method is presented to evaluate optimal pre- and post-denitrification bioreactor stages. Applying the method developed, simulation studies were carried out to investigate the impacts of the ratio of the influent readily biodegradable and slowly biodegradable substrates and the oxygen entering the denitrification zones on the optimal anoxic reactor configuration. In addition, the paper describes the effects of the slowly biodegradable substrate on the denitrification efficiency using external substrate dosing, and it demonstrates kinetic considerations concerning the hydrolysis process. It has been shown that as a function of the biodegradable substrate composition, the stage system design with three optimized reactor compartments can effectively increase reaction rates in the denitrification zones, and can provide flexibility for varying operation conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.