Abstract
In order to solve the problem of the traditional iterative closest point algorithm (ICPA), which requires a high initial position of point cloud and improves the speed and accuracy of point cloud registration, a new registration method is proposed in this paper. Firstly, the rough registration method is optimized. As for the extraction of the feature points, a new method of feature point extraction is adopted, which can better keep the features of the original point cloud. At the same time, the traditional point cloud filtering method is improved, and a voxel idea is introduced to filter the point cloud. The edge length data of the voxels is determined by the density, and the experimentally verified noise removal rates for the 3D cloud data are 95.3%, 98.6%, and 93.5%, respectively. Secondly, a precise registration method that combines the curvature feature and fast point feature histogram (FPFH) is proposed in the precise registration stage, and the algorithm is analyzed experimentally. Finally, the two point cloud data sets Stanford bunny and free-form surface are analyzed and verified, and it is concluded that this method can reduce the error by about 40.16% and 36.27%, respectively, and improve the iteration times by about 42.9% and 37.14%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.