Abstract

Temperature sensing with nitrogen vacancy (NV) centers using quantum techniques is very promising and further development is expected. Recently, the optically detected magnetic resonance (ODMR) spectrum of a high-density ensemble of the NV centers was reproduced with noise parameters [inhomogeneous magnetic field, inhomogeneous strain (electric field) distribution, and homogeneous broadening] of the NV center ensemble. In this study, we use ODMR to estimate the noise parameters of the NV centers in several diamonds. These parameters strongly depend on the spin concentration. This knowledge is then applied to theoretically predict the temperature sensitivity. Using the diffraction-limited volume of 0.1 micron^3, which is the typical limit in confocal microscopy, the optimal sensitivity is estimated to be around 0.76 mK/Hz^(1/2) with an NV center concentration of 5.0e10^17/cm^3. This sensitivity is much higher than previously reported sensitivities, demonstrating the excellent potential of temperature sensing with NV centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.