Abstract

A high-performance transportable fountain clock is attractive for use in laboratories with high-precision time-frequency measurement requirements. This Letter reports the improvement of the stability of a transportable rubidium-87 fountain clock because of an optimization of temperature characteristics. This clock integrates its physical packaging, optical benches, microwave frequency synthesizers, and electronic controls onto an easily movable wheeled plate. Two optical benches with a high-vibration resistance are realized in this work. No additional adjustment is required after moving them several times. The Allan deviation of the fountain clock frequency was measured by comparing it with that of the hydrogen maser. The fountain clock got a short-term stability of 2.3×10−13 at 1 s and long-term stability on the order of 10−16 at 100,000 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.