Abstract

In the hot strip rolling control system, the temperature distribution and deformation resistance are the main parameters affecting prediction of rolling force. In order to improve the model prediction precision, an optimization algorithm based on objective function was put forward, in which the penalty function index was adopted. During the adaptation process, the temperature distribution and deformation resistance were taken as the optimized parameters, and the Nelder-Mead simplex algorithm was used to search the optimal solution of the objective function. Furthermore, the temperature adaptation and force adaptation were solved simultaneously. Application results show that the method can improve the accuracy of the rolling force model obviously, and it can meet the demand of the industrial production and has a good application prospect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.