Abstract

In this report, GdPO4·nH2O and Tb3+-doped GdPO4·nH2O nanorods@silica-NH2 conjugated with IgG antibody were synthesized by applying hydrothermal, sol-gel, and coprecipitation methods successively. The effects of Tb3+/Gd3+ molar ratios of reactants on the size, morphology, and luminescence of the synthesized samples were also investigated. For the optimized GdPO4·nH2O : Tb3+ sample, uniform nanorods sizing from 10 to 30 nm in diameter and from 200 to 300 nm in length were obtained with the strongest luminescence in green color with narrow bands under the UV excitation (325 nm). The results revealed that, after being coated with silica-NH2 and conjugated with IgG antibody, all luminescence characteristic peaks of GdPO4·nH2O : Tb3+ corresponding to the process of energy transfer from Gd3+ to Tb3+ and then the emission from 5D4 → 7FJ (J=6,5,4,3) of Tb3+ were still clearly observed. The initial results of using the optimized Tb3+-doped GdPO4·nH2O nanorods@silica-NH2 conjugated with IgG antibody for rapid selective detection of Naja atra cobra venom were also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.