Abstract

The aim of the present study is to implement QbD approach for development and optimization of Tacrolimus Loaded Reconstituted Nanoparticles. Tacrolimus-loaded nanoparticles were prepared by using Kollisolve PEG 300, Kolliphor ELP, Citrate buffer solution and Tween 80. The aqueous medium was added drop by drop into the organic phase at continuous stirring on a magnetic stirrer for half an hour. The solution then homogenized at high pressure that reduced particle size. Drying was done by using Low Endotoxin Lactose Monohydrate as a carrier. The final reconstituted powder stored in a closed container and assessed for zeta potential, drug loading, FT-IR Studies, Particle Size Analysis, SEM, X-Ray Diffraction, DSC etc. Optimization was performed by using Design Expert 8 software, 3 Level Factorial design was selected from Response Surface Design. The drug was found to be 98.65% w/w by assay. The particle size was found to be in the range of 263nm - 500nm. Tacrolimus powder shows O-H stretching vibration at 3374.91cm−1, C = O stretching vibrations at 1733.38 cm−1, and C = C stretching vibration at 1631.55 cm−1, C–O (ester) stretching vibration at 1248.11 cm−1. Tacrolimus nanoparticles were optimized by QbD method, Methanol: Phosphate Buffer (80:20) solvent phase was used having pH 6. The maximum wavelength of Tacrolimus was found to be 293nm. The desirability value of that optimized method was found to be 1. Tacrolimus Loaded Reconstituted Nanoparticles leads to enhanced solubility and we can conclude that an increase in pH was responsible for increment in absorbance and thus showed the direct relationship between them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call