Abstract

In this work, Fe3O4@SiO2 nanoparticles were coated with mesoporous silica shell by S−N+I− pathway by using anionic surfactant (S−) and co-structure directing agent (N+). The role of co-structure directing agent (CSDA) is to assist the electrostatic interaction between negatively charged silica layers and the negatively charged surfactant molecules. Prior to the mesoporous shell formation step, magnetic cores were coated with a dense silica layer to prevent iron oxide cores from leaching into the mother system under any acidic circumstances. However, it was found that both dense and mesoporous coating parameters affect the textural properties of the produced mesoporous silica shell (i.e., surface area, pore volume and shell thickness). The synthesized Fe3O4@SiO2@m-SiO2 (MCMSS) nanoparticles have been characterized by low-angle X-ray diffraction, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, and magnetic properties. The synthesized particles had dense and mesoporous silica shells of 8–37 nm and 26–50 nm, respectively. Furthermore, MCMSS possessed surface area of ca. 259–621 m2·g−1, and pore volume of ca. 0.216–0.443 cc·g−1. MCMSS showed docetaxcel cancer drug storage capacity of 25–33 w/w% and possessed control release from their mesochannels which suggest them as proper nanocarriers for docetaxcel molecules.

Highlights

  • Controlled drug release and stimulated drug targeting could be considered two of the most important and attractive research fields

  • To fabricate mesoporous silica shell onto Fe3O4 nanoparticle by anionic surfactant, first Fe3O4 should be coated with a dense silica layer of desired thickness in order to protect the iron oxide core from leaching into the mother system under any acidic circumstances

  • The differentiation of mesoporous and dense silica layers can be attributed to a protective silica layer that formed around magnetic cores, which become denser with increasing ammonia content and imparted a porous character at low ammonia concentration, as we have previously described in DMCSS

Read more

Summary

Introduction

Controlled drug release and stimulated drug targeting could be considered two of the most important and attractive research fields. During the self-assembly process, the positively charged amine or ammonium sites of CSDA interact electrostatically with the templating anionic surfactant micelles and the alkoxysilane sites of CSDA co-condense with the inorganic precursors This new pathway has been proven a successful way to produce a series of novel mesostructured phases, such as lamellar, hexagonal, cubic, and disordered mesostructures [18,19] as well as well-defined morphologies [20,21,22]. Mesoporous silica shell formation onto super magnetic Fe3O4@SiO2 nanoparticles (MCMSS) was optimized by using anionic surfactant in a two-pot synthesis route. The impact of both dense and mesoporous coating parameters on surface area, pore volume and shell thickness was studied. MCMSSs have been tested as nanocarriers for docetaxcel cancer drugs where they have shown high storage capacity together with slow release rates

Synthesis of Fe3O4 Nanoparticles
Dense Silica Coating of Magnetic Nanoparticles
Effect of Ethanol Concentration
Effect of Ammonia Concentration
Mesoporous Shell Formation on Silica Coated Magnetic Nanoparticles
Effect of Ethanol
Effect of Ammonia
Mesoporous Shell Formation Parameters
Fe3O4 Synthesis
Dense Silica Coating
Construction of Mesoporous Silica Shell by Anionic Surfactant
Docetaxel Loading and Release Study
Characterization
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call