Abstract

Rice husk (RH), an inexpensive waste material, was used to produce nanosilica. Acid treatment of RH followed by thermal combustion under controlled conditions gave 22.50% ash of which 90.469% was silica. Various chemical treatments in varied conditions for controlled combustion were investigated in order to produce highly purified nanosilica. The structural properties (such as X-ray diffraction, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, and transmission electron microscopy) of the silica were studied. The method was optimized, and the chemical composition of the product was determined by X-ray fluorescence and carbon, hydrogen, and nitrogen analysis. Lime reactivity of the ashes was determined. At optimized conditions, a nanosized, highly purified silica (98.8 mass percentage) was produced with a high surface area, high reactivity, and 99.9% amorphous in form. Strength and number of acidic sites were measured by potentiometric titration. This nanosilica showed strong and a large number of acidic sites in comparison with commercial silica, making it as a good support for catalysts. This economic technology, as applied to waste material, also provides many benefits to the local agro-industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.