Abstract

The vertical-axis wind turbine has an advantage over the horizontal-axis wind turbine because of its structural simplicity due to the independence of motion in wind direction. This article describes a new idea on how to develop the Darrieus vertical-axis wind turbine by modifying the angle of attack and adding airfoils on the wind turbine. The wind turbine has a symmetrical airfoil of NACA 0012 with three-double blade configurations to optimize the performance of the vertical shaft wind turbine. A computational fluid dynamics technique was used to understand the impact of variations of wind velocity on the angle of attack and additional distance of airfoil in turbulence intensity based on the contour of wind velocity passing the wind turbine. Using this method, the authors showed that the results of the study in turn with the variation of wind velocity, different angle of attack and additional distance of airfoil have an effect on the values of lift and drag coefficient. The highest value of the coefficient of lift is 4.1, followed by the coefficient of drag which is 0.79 at 0.3 m with the angle of attack at -4o, the wind velocity is 9.428 m/s and the result of the highest torque is 0.57 Nm which has a coefficient of performance of 1.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.