Abstract

The concept of symbolic dynamics has been used in recent literature for feature extraction from time series data for pattern classification. The two primary steps of this technique are partitioning of time series to optimally generate symbol sequences and subsequently modeling of state machines from such symbol sequences. The latter step has been widely investigated and reported in the literature. However, for optimal feature extraction, the first step needs to be further explored. The paper addresses this issue and proposes a data partitioning procedure to extract low-dimensional features from time series while optimizing the class separability. The proposed procedure has been validated on two examples: (i) parameter identification in a Duffing system and (ii) classification of fatigue damage in mechanical structures, made of polycrystalline alloys. In each case, the classification performance of the proposed data partitioning method is compared with those of two other classical data partitioning methods, namely uniform partitioning (UP) and maximum entropy partitioning (MEP).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.