Abstract

A flow reaction system was utilized to investigate lignocellulose conversion using combined supercritical/subcritical conditions for hexose production. Initially, investigation of cellulose hydrolysis in supercritical water and optimization of reaction parameters were done. Oligosaccharide yields reached over 30% at cellulose concentrations of 3–5gL−1 and reaction times of 6–10s at 375°C, and 2.5–4gL−1 and 8–10s at 380°C. Temperatures above 380°C were not appropriate for the supercritical phase in the combined process. Subsequently, conversion of lignocellulosic materials under combined supercritical/subcritical conditions was studied. Around 30% hexose was produced from corn stalks under the optimal parameters for supercritical (380°C, 23–24MPa, 9–10s) and subcritical (240°C, 8–9MPa, 45–50s) phases. Flow systems utilizing the combined supercritical/subcritical technology present a promising method for lignocellulosic conversion. The results of this study provide an important guide for the operational optimization and practical application of the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.