Abstract

Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3−-N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the “Sulfur–Iron–Nitrogen” cycle were enriched in S.3. The current study provided that the “Sulfur–Iron–Nitrogen” cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.