Abstract

Optimization of pre-treatment conditions has been achieved for total sugar release from banana peel powder waste (BPPW) feedstock modelled through a three-level Box-Behnken design (BBD) of the response surface methodology (RSM). A series of various runs were executed at varied acid (H2SO4) concentrations (0.05%–0.15% v/v), incubation periods (1 h–3 h) in water bath at 95 °C and alkali (NaOH) concentrations (0.05%–0.15% v/v) according to the Box-Behnken design (BBD). From RSM the significant values of incubation period, acid concentration and alkali concentration were obtained as 3 h, 0.095% v/v, and 0.05% v/v respectively. The maximum total sugar release was reported as 5243.62 μg/ml which was highly close to the predicted value (5010.07 μg/ml). The model P- value (0.001), R-sq (98.26%), (adj) R-sq (95.14%) and (pred) R-sq (79.56%) obtained through ANOVA justified the results. The mutual impact of alkali and incubation period had the highest effect on total sugar release from dried banana peel powder, followed by mutual impact of acid and incubation period based on ANOVA (Analysis of Variance) results.Under optimized conditions of pre-treatment six different substrate concentrations (1%, 3%, 5%, 7% and 9% w/v) of BPPW was hydrolyzed and used to obtain volumetric bio-hydrogen evolution. The highest cumulative volumetric bio hydrogen gas 43 ml H2/30 ml media was achieved at 5% w/v of pretreated BPPW. The substrate concentration above 5% w/v resulted in lowered fermentation process owing to product and substrate inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call