Abstract

The paper investigates the spatial and temporal variation of laser produced plasma of tungsten oxide using a Langmuir probe. The plasma was produced by laser ablation of tungsten oxide target using an Excimer laser of wavelength 248 nm. Our experimental studies confirmed that oxygen partial pressure (P) of 2× 10−2 mbar is sufficient enough to get stoichiometric tungsten oxide thin films and the plume dynamics was diagnosed for their spatial and temporal behaviour at the above optimised oxygen pressure. Spatial distribution was recorded with the target to substrate distance (D) ranging from the target position to a distance of 75 mm away from the target, whereas the temporal variation was taken in the range of 0–50 μ S with an interval of 0.5 μ S. The average electron densities were found to be maximum at 30 mm from the target position. However, ion density was constant beyond the probe distance of 45 mm from the target. The plasma current was found to be maximum at 28 μ S. The target to substrate distance was optimized for homogenous adherent good quality thin films using plasma parameters such as ion density and average electron density obtained at different oxygen pressure. The target distance and background gas pressure were correlated as PD scaling law and fitted as PD3 in the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call