Abstract

Parkinson's disease (PD) is manifested with disrupted topology of the structural connection network (SCN) and the functional connection network (FCN). However, the SCN and its interactions with the FCN remain to be further investigated. This multimodality study attempted to precisely characterize the SCN using diffusion kurtosis imaging (DKI) and further identify the neuropathological pattern of SCN-FCN decoupling, underscoring the neurodegeneration of PD. Diffusion-weighted imaging and resting-state functional imaging were available for network constructions among sixty-nine patients with PD and seventy demographically matched healthy control (HC) participants. The classification performance and topological prosperities of both the SCN and the FCN were analyzed, followed by quantification of the SCN-FCN couplings across scales. The SCN constructed by kurtosis metrics achieved optimal classification performance (area under the curve 0.89, accuracy 80.55 %, sensitivity 78.40 %, and specificity 80.65 %). Along with diverse alterations of structural and functional network topology, the PD group exhibited decoupling across scales including: reduced global coupling; increased nodal coupling within the sensorimotor network (SMN) and subcortical network (SN); higher intramodular coupling within the SMN and SN and lower intramodular coupling of the default mode network (DMN); decreased coupling between the modules of DMN-fronto-parietal network and DMN-visual network, but increased coupling between the SMN-SN module. Several associations between the coupling coefficient and topological properties of the SCN, as well as between network values and clinical scores, were observed. These findings validated the clinical implementation of DKI for structural network construction with better differentiation ability and characterized the SCN-FCN decoupling as supplementary insight into the pathological process underlying PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call