Abstract

Properties of Cu–Cr–Zr alloy with ultrafine-grained (UFG) structure produced by equal-channel angular pressing (ECAP) via different routes have been investigated. Special attention was paid to the optimization of multi-functional structural, thermal, electrical and mechanical properties of the alloy by aging of UFG one. Multi-pass ECAP via different routes gives rise to the formation of a deformation-induced submicrocrystalline structure with the grain (subgrain) sizes in the range of 200–300nm depending on applied routes which leads to high hardness and strength in the Cu–Cr–Zr alloy with reduced ductility. Amongst the applied routes, route-Bc was found to be the best processing path for achieving the lowest grain size, the highest hardness and strength. Aging of 8Bc-processed UFG samples increases the hardness and strength of Cu–Cr–Zr alloy while retaining an electrical conductivity comparable to that of aged coarse-grained (CG) one. A satisfactory electrical conductivity of 71%IACS without considerable loss of peak hardness was achieved after aging of 8Bc-processed UFG alloy at 425°C for 240min. The precipitation strengthened UFG alloy remains its stable behavior at elevated temperatures up to 450°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call