Abstract

Hybrid aluminum matrix composites (HAMCs) are capable to meet recent demands of advanced engineering applications due to its tunable mechanical properties and lower cost. Stir casting is one of the prominent and economical method for processing of continuous reinforced HAMCs. In this method, flow pattern is the key factor for distribution of particles in the molten metal. Effective flow pattern can be achieved by optimizing stirring parameters i.e. blade angle, impeller size and stirring speed. However, complete study and optimization of flow is a challenge for research community. Finite element method simulation along with optimization technique is one of the effective combination to guide experimental research. In this paper, computational fluid dynamics has been used to simulate fluid flow during stir casting, whereas optimization of stirring parameters is done by Grey Taguchi method. Optimized parameters have been used for experimental synthesis of HAMCs. Furthermore, optical micrograph and hardness confirms about the uniform dispersion of reinforcements. These results may guide the researchers for the preparation of HAMCs with uniform particle distribution by stir casting route for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call