Abstract

A recently isolated white-rot fungal strain, Merulius tremellosus ono991, displays high stereoselectivity during the reduction of arylketones. In order to increase the productivity and specific yield of the optically active alcohols, the culture conditions for the reduction of the model ketone compound 1'-acetonaphtone to alpha-methyl-1-naphtalenemethanol were optimized with respect to oxygen supply, choice of primary substrate and arylketone concentration. Alternative electron acceptors were also used to elucidate the role of reduction equivalents in the reduction process. The optimal yields of alpha-methyl-1-naphtalenemethanol were obtained in N2-flushed incubations with glycerol as primary substrate. The specific yield was increased from 57% to 98% compared to incubations under air with glucose. Most of the yield increase was due to N2-flushing and could be attributed to two factors. First, an increased stability of the product, alpha-methyl-1-naphtalenemethanol, in anaerobic compared to aerobic atmosphere was demonstrated. Second, fermentative metabolism increased reduced enzyme cofactors available for the reduction. Diverting reducing equivalents away from fermentation with alternative electron acceptors correlated with a decreased yield of alpha-methyl-1-naphtalenemethanol. Furthermore, the dependency of ketone reductase for common occurring metabolic reducing equivalents, NAD(P)H, was demonstrated by the reduction of 1'-acetonaphtone in cell extracts of M. tremellosus ono991.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.