Abstract

Traditionally, a trial-and-error procedure is carried out to design cross-sectional areas of stay cables in cable-stayed bridges. This design process is monotonous, expensive, time-consuming, and incapable of finding the optimum design solution. The aim of this study is to develop a robust design optimization technique in order to achieve the minimum cross-sectional areas of stay cables. The developed optimization technique integrates finite element method, B-spline curves, and genetic algorithm. The capability and efficiency of the proposed optimization technique is tested and assessed by applying it to a practical sized cable-stayed bridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.