Abstract
Composite beams, plates and shells are widely used in the aerospace industry because of their advantages over the commonly used isotropic structures especially when it comes to weight savings. Buckling analyses of composite structural components must be performed in order to ensure, for instance, that a composite panel designed to be part of a control surface does not buckle thereby compromising its aerodynamic shape. Optimization of composite structures has been performed in this paper using Genetic algorithm. Genetic algorithm (GA) approaches are successfully implemented for the TSP. The buckling load of composite plate, which is obtained by the Artificial Neural Networks, was used as the fitness function in the GA to find its optimized value by arranging the ply stacking sequence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.