Abstract
We demonstrate a systematic study optimizing the properties of CoCrFeNi medium entropy alloy (MEA) thin films by tuning the deposition parameters of the pulsed direct current (DC) magnetron sputtering process. The chemical composition and microstructure of thin films were studied with energy dispersive X-ray spectroscopy (EDS), an X-ray diffractometer (XRD) and a transmission electron microscope (TEM). Abundant nanotwins and the dual face-centered cubic-hexagonal close-packed (FCC-HCP) phases were formed in some specimens. The Taguchi experimental method and analysis of variance (ANOVA) were applied to find the optimized parameters. The control factors are five deposition parameters: substrate bias, substrate temperature, working pressure, rotation speed and pulsed frequency. According to the signal-to-noise ratio results, the optimized parameters for low electrical resistivity (98.2 ± 0.8 μΩ·cm), low surface roughness (0.5 ± 0.1 nm) and high hardness (9.3 ± 0.2 GPa) were achieved and verified with confirmed experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.