Abstract
The objective of the work is to optimize the design of spring-loaded crutches by choosing appropriate spring stiffness based on their dynamic characteristics. It was shown in the literature that ambulation with spring-loaded crutches reduces the initial impulse yielded by ambulation with standard crutches and provides a propulsion mechanism. This research not only provides a genre of the spring-loaded crutches via compliance, but also proposes an approach to optimize the stiffness of the helical spring through studying the dynamics of crutch stance. The method is developed using a boundary value problem and its solution method and is studied numerically. Experiments were carried out on four subjects in a biomechanics laboratory. It suggests that the optimized spring-loaded crutches guarantee the propulsion mechanism at the right time and right position during dynamical ambulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.