Abstract
ObjectivesThe purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. MethodsFirst, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. ResultsThe yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. ConclusionsIn this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics.We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding SourcesThis study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs▪▪▪▪▪
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.