Abstract

To compare different optimization approaches for choosing the spin-lock times (TSLs), in spin-lattice relaxation time in the rotating frame (T1ρ ) mapping. Optimization criteria for TSLs based on Cramér-Rao lower bounds (CRLB) are compared with matched sampling-fitting (MSF) approaches for T1ρ mapping on synthetic data, model phantoms, and knee cartilage. The MSF approaches are optimized using robust methods for noisy cost functions. The MSF approaches assume that optimal TSLs depend on the chosen fitting method. An iterative non-linear least squares (NLS) and artificial neural networks (ANN) are tested as two possible T1ρ fitting methods for MSF approaches. All optimized criteria were better than non-optimized ones. However, we observe that a modified CRLB and an MSF based on the mean of the normalized absolute error (MNAE) were more robust optimization approaches, performing well in all tested cases. The optimized TSLs obtained the best performance with synthetic data (3.5-8.0% error), model phantoms (1.5-2.8% error), and healthy volunteers (7.7-21.1% error), showing stable and improved quality results, comparing to non-optimized approaches (4.2-13.3% error on synthetic data, 2.1-6.2% error on model phantoms, 9.8-27.8% error on healthy volunteers). A modified CRLB and the MSF based on MNAE are robust optimization approaches for choosing TSLs in T1ρ mapping. All optimized criteria allowed good results even using rapid scans with two TSLs when a complex-valued fitting is done with iterative NLS or ANN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.