Abstract
A nonlinear neural dynamics model is presented as a new structural optimization technique and applied to minimum weight design of space trusses subjected to stress and displacement constraints under multiple loading conditions. A pseudo-objective function is formulated for the optimization problem in the form of a Lyapunov function to ensure the global convergence and the stability of the neural dynamic system by adopting an exterior penalty function method. The topology of the neural dynamics model consists of one variable layer and multi-constraint layers. The number of constraint layers corresponds to the number of loading conditions in the structural optimization problem. Design sensitivity coefficients calculated by the adjoint variable method are included in the inhibitory connections from the constraint layers to the variable layer. Optimum weights and design solutions are presented for four example structures and compared with those reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.