Abstract

Estimation of software cost (ESC) is considered a crucial task in the software management life cycle as well as time and quality. Prior to the development of a software project, precise estimations are required in the form of person month and time. In the last few decades, various parametric and non-algorithmic or non-parametric approaches regarding the estimation of software costs have been developed. Among them, the constrictive cost model (COCOMO-II) is a commonly used method for estimating software cost. To further improve the accuracy of this model, researchers and practitioners have applied numerous computational intelligence algorithms to optimize their parameters. However, accuracy is still a big problem in this model to be addressed. In this paper, we proposed a biogeography-based optimization (BBO) method to optimize the current coefficients of COCOMO-II for better estimation of software project cost or effort. The experiments are conducted on two standard data sets: NASA-93 and Turkish Industry software projects. The performance of the proposed algorithm called BBO-COCOMO-II is evaluated by using performance indicators including the manhattan distance (MD) and the mean magnitude of relative error (MMRE). Simulation results reveal that the proposed algorithm obtained high accuracy and significant error minimization compared to original COCOMO-II, particle swarm optimization, genetic algorithm, flower pollination algorithm, and other various baseline cost estimation models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call