Abstract

Abstract The aim of this work is to optimize an interconnect design. A three-dimensional model have been developed in order to investigate the effect of interconnect design on electrical performance and degradation process. Oxygen concentration, potential, current density and temperature distribution in interconnect and SOFC cathode have been calculated. Cathode degradation has been supposed to be due to temperature gradient non-uniformity. Our studies have demonstrated the impact of cathode/interconnect contact on thermal and electrical behavior. Thus, an optimization of the cathode/interconnect contact using COMSOL Multiphysics ® software has been investigated. In this investigation, the effects of the two geometrical parameters are considered. This paper presents the modification of cathode/interconnect contact area and electrical collecting pins size. Simulations show a decreasing power density and a reduction of temperature gradient for an increasing contact area. With a decreasing size of collecting pins, better temperature homogeneity and power density are recorded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call