Abstract
This study introduces an innovative optimized bolting support system specifically tailored for gob-side entry excavation in thick coal seams at a coal mine in southwestern Shandong, China. Employing theoretical analysis, numerical simulation, and field measurements, the research focuses on examining the failure characteristics of surrounding rock during gob-side entry excavation. The key innovation lies in the development of a 5-meter optimal coal pillar width, ensuring balanced stress distribution and structural integrity. Additionally, a lag time of at least 46 days between gob-side entry excavation and the upper working face retreat is recommended to mitigate roof subsidence and surrounding rock deformation. The optimized bolting support system, featuring increased bolt pretension, utilization of high-strength steel strips, and reinforcement of weak points, effectively reduces deformation of the roadway surrounding rock, meeting support requirements for normal production. This novel approach successfully addresses the support challenges in thick coal seam gob-side entry excavation, enhancing mining safety and resource recovery rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.