Abstract

Bioactive ceramic materials have been under research as bone substitute for several decades. To repair the high-load bearing bones, mainly cortical bones, there is a need for the substitute to possess comparable mechanical strength to cortical bone, of which the compressive strength ranges between 100 and 230 MPa. Two prevailing bone repairing material, β-tricalcium phosphate (β-TCP, β-Ca3(PO4)2) and hydroxyapatite (HAp: Ca10(PO4)6(OH)2) have been widely researched and sintered into dense blocks to meet the mechanical requirements. α-tricalcium phosphate (α-TCP, α-Ca3(PO4)2), a high temperature polymorph of β-TCP, received relatively less attention and α-TCP dense sintered blocks have not been reported yet. In this research, we fabricated α-TCP dense blocks by sintering under various temperatures (1150-1400 °C) and the highest compressive strength was around 230 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.