Abstract
AbstractHydraulic systems that operate over a broad range of load pressures pose challenges for suppression of fluid-borne noise. A common type of noise control device, a bladder-style suppressor, performs well only over a relatively narrow range of load or system pressures. This paper considers the problem of finding the optimal charge pressure(s) in either a single suppressor or two suppressors in series for maximum fluid-borne noise suppression in a weighted sense. The transmission loss, a measure of pressure ripple (dynamic pressure fluctuation) reduction, for the suppressors is predicted by an equivalent fluid model. The optimum configuration is sought through maximization of an objective function. The objective function is a summation of weighted transmission losses, where the weighting captures the duty cycle of the load pressure through a time weighting factor, and frequency weighting factor captures the spectral content of the pressure ripple. The duty-cycle weighting biases the objective functio...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.