Abstract

In order to promote the cost reduction and efficiency improvement of the logistics distribution process and to guarantee the safety of goods transportation, this paper studies the portfolio optimization of goods loading and the problem of simultaneous pickup and delivery vehicle routing. A balanced loading constraint was introduced to restrict loading through two aspects of axle weight bearing and lateral center-of-gravity offset. With the shortest total route length as the objective, this paper constructs a simultaneous pickup and delivery vehicle routing model with three-dimensional (3D) balanced loading constraints (3BL-VRPSPD). Additionally, a hybrid tabu search (TS) algorithm embedded loading test was proposed to solve this problem. Firstly, a heuristic insertion method was applied to determine the initial routing scheme, and the node swapping and relocation operators were designed to construct the tabu neighborhood scheme for routing optimization. On this basis, the 3D balanced loading was incorporated into the routing iteration process. A balanced loading algorithm, combining multiple-indicator ordering and maximum space division strategies (MOMD), was formulated to develop a 3D-balanced loading plan for goods with a pickup and delivery vehicle routing scheme. Finally, standard instances verified the effectiveness of the method. The results show that the proposed method can effectively optimize 3BL-VRPSPD and outperform other algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call