Abstract

An optimization procedure for simulated moving bed (SMB) plants with low efficient stationary phases is presented. The new aspect is that the desorbent consumption can be cut by 70% by running the plant with lower internal liquid flows and a corresponding larger switch time while the productivity is kept constant. This concept was validated by the separation of fructose and glucose in water on a calcium resin with an eight-column SMB plant. The separation can be predicted well by a true moving bed (TMB) and a simulated moving bed simulation. Adsorption isotherms were determined up to 300 kg/m 3 for glucose and 500 kg/m 3 for fructose from 25 to 80°C. Experimental SMB runs were performed over a wide range of feed concentrations (10–350 kg/m 3) and temperatures (25–80°C). The strong influence of the delay volume is pointed out. For an experimental run with high feed concentration a complete set of data is presented. To reduce biological growth separation at 80°C is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.