Abstract
The present work aims at obtaining a suitable and selective catalyst for catalytic dehydrogenation reactions through designing pore structures of silica-containing alumina nanocomposites by optimizing silica content in the structure. In this trend, series of silica-containing alumina nanocomposites with different molar ratios Al2O3/SiO2 were prepared by the solvothermal method. According to surface characterization of silica-containing alumina nanocomposites, the sample with the highest molar ratio of Al2O3/SiO2 (2.06) showed mesoporous structure with selective pore sizes of 3.7 and 4.6nm. In addition, it had a high surface area value of 308m2/g. Furthermore, SEM and TEM images of the same sample showed ultra fine sized particles in the nano size (7–17nm). Dehydrogenation catalysts, as developed structures, were then achieved by loading 0.6wt.% platinum metal over the prepared nanocomposites. Performances of the prepared nanocatalysts were investigated via the dehydrogenation of a model compound namely; cyclohexane. Experimental results showed that the Pt catalyst supported on the silica-containing alumina nanocomposites with the highest molar ratio of Al2O3/SiO2, is an efficient and selective catalyst toward the dehydrogenation reaction. This was revealed in terms of 100% selectivity of this catalyst toward the conversion of cyclohexane at all ranges of temperatures with the conversion reaction being temperature dependent. Practically, the total conversion of cyclohexane increased with increasing reaction temperature and reached 100% at 450°C while the prepared catalyst demonstrated absolute selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.