Abstract

The main problem in 31P magnetic resonance spectroscopy is a low signal-to-noise ratio (SNR) of spectra acquired with clinical magnetic resonance imaging (MRI) scanners. Using spin-spin phosphorus-proton (31P-1H) decoupling and heteronuclear Overhauser effect and taking into account the effect of the longitudinal relaxation time T1 on the SNR, the method for localization and excitation of the region of interest (Image Selected in vivo Spectroscopy pulse sequence) was optimized to increase the SNR in the 31P magnetic resonance spectra of the human brain to ~50% without increasing signal acquisition time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call