Abstract

Aiming at the problem that the single kernel function of kernel extreme learning machine (KELM) cannot adapt to the variable actual wind power. This paper proposes a modified prediction model which can increase the accuracy of prediction. The prediction model uses multiple kernel functions instead of a single kernel function and optimizes the kernel parameters by using a sparrow search algorithm (SSA). Finally, through the simulation and comparison experiments, the proposed prediction model has better prediction accuracy than the conventional prediction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.