Abstract

A three dimensional numerical simulation was performed to study the effect of the shape and the angle of attack of the winglet vortex generator on the heat transfer and fluid flow characteristics in a rectangular heat sink. The mass, momentum and energy equations were solved using finite volume method by considering the steady state, laminar and incompressible fluid flow. The average and local Nusselt number and pressure drop were investigated in the presence of the vortex generators at different shapes and angles of attack. To achieve a maximum heat transfer enhancement and a minimum pressure drop, the optimal values of these parameters were calculated using the Pareto optimal strategy. For this purpose, computational fluid dynamics analyses, multi-objective genetic algorithm and artificial neural networks were combined together and used in the optimization process. Finally, the optimal values of these parameters were presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.