Abstract
This work deals with the optimization of sensorless field-oriented control of an induction motor taking into account of magnetic saturation effects. We propose a double optimization (in the point of view of dynamic and energetic performances) of sensorless field-oriented control of induction motor. This control is associated to a Luenberger type interconnected observers. Particle swarm optimization algorithm is used notably to determine the optimal gains of the observers as well as the optimal parameters of the regulators. This algorithm guarantees the stability and the global convergence of the system. The sensorless control takes into account all operating range of the machine (very low speed, low speed, high speed with or without load torque). Regarding the energetic optimization, the reference of the rotor flux is generated using another developed algorithm that permits us to dynamically determine the optimal rotor flux for each given value of motor load and speed. Numerical simulations are carried out each time to confirm theoretical predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.