Abstract

BackgroundThe combination of optimized contribution dynamic selection and various mating schemes was investigated over seven generations for a typical tree breeding scenario. The allocation of mates was optimized using a simulated annealing algorithm for various object functions including random mating (RM), positive assortative mating (PAM) and minimization of pair-wise coancestry between mates (MCM) all combined with minimization of variance in family size and coancestry. The present study considered two levels of heritability (0.05 and 0.25), two restrictions on relatedness (group coancestry; 1 and 2%) and two maximum permissible numbers of crosses in each generation (100 and 400). The infinitesimal genetic model was used to simulate the genetic architecture of the trait that was the subject of selection. A framework of the long term genetic contribution of ancestors was used to examine the impacts of the mating schemes on population parameters.ResultsMCM schemes produced on average, an increased rate of genetic gain in the breeding population, although the difference between schemes was small but significant after seven generations (up to 7.1% more than obtained with RM). In addition, MCM reduced the level of inbreeding by as much as 37% compared with RM, although the rate of inbreeding was similar after three generations of selection. PAM schemes yielded levels of genetic gain similar to those produced by RM, but the increase in the level of inbreeding was substantial (up to 43%).ConclusionThe main reason why MCM schemes yielded higher genetic gains was the improvement in managing the long term genetic contribution of founders in the population; this was achieved by connecting unrelated families. In addition, the accumulation of inbreeding was reduced by MCM schemes since the variance in long term genetic contributions of founders was smaller than in the other schemes. Consequently, by combining an MCM scheme with an algorithm that optimizes contributions of the selected individuals, a higher long term response is obtained while reducing the risk within the breeding program.

Highlights

  • The combination of optimized contribution dynamic selection and various mating schemes was investigated over seven generations for a typical tree breeding scenario

  • In general, the minimum coancestry mating (MCM) schemes produced a higher level of genetic merit (G7) and lower level of inbreeding (F7) after seven generations of selection compared to equivalent results achieved by random mating (RM)

  • Up to 7.1% increase in genetic merit was achieved by MCM2, MCM3, and MCM4 in comparison with corresponding results obtained by RM

Read more

Summary

Introduction

The combination of optimized contribution dynamic selection and various mating schemes was investigated over seven generations for a typical tree breeding scenario. If too many highly ranked candidates are selected, the genetic variance will be quickly reduced, compromising the long term response to selection and increasing the risk that individuals will suffer from inbreeding depression It is, important (page number not for citation purposes). [9] examined the maximum reduction in coancestry at a specified level of genetic improvement in Eucalyptus globulus, whilst [10] assessed the increase in genetic gain achieved using the OC method in comparison with standard restricted selection in Pinus sylvestris. These studies are, to our knowledge, the only applications of quadratic optimisation selection in the field of tree breeding

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call