Abstract

Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40–50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mm×2 , internal blanket of 150 mm and axial blanket of 400 mm×2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in ( seed+ internal blanket + outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mm×2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature coefficient is negative for both of cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call